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Patterning the building blocks of materials into special periodic a Carbon flux b
structures will provide us interesting and useful electrémipficaf o \J ]
and magnetitproperties originated not only from the constituent {1001 o100 N
material but also from the long-range order of these structures. The |nm]>‘l" NVANPN
formation of two-dimensional (2D) superlattices of metal nano- carmng‘/ D VAN
particles has been vigorously investigatetiyhile the fabrication L A [

of one-dimensional (1D) chains is the most challenging subject, L 7
because it is quite difficult to arrange metal nanoparticles in low
symmetry. For further miniatuarization of microelectronic devices,
ordering nanopatrticle building blocks in 1D configuration to produce
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one-dimensional chains is required to make use of single-electron ¥ - oip in DT-Autolusne
tunneling effect at room temperature. If we are able to organize DT shell,

Au core _\
W

them into 1D configuration, the tunneling behavior of electrons
between nanoparticles can be investigated in detail, and the
resolution of integrated circuits will be drastically improved beyond
the resolution of the current photolithography technique, even ; : :
though desirable 2D patterning of nanoparticles would be required. Copper grid o 5w B @ % % m

Template methods are the effective ways to form the long-range Figure 1. (a) Schematic illustration of a preparation of the carbon layer

1D chains of metal nanoparticlegor example, 1D chains of gold  with ridge-and-valley structure and the formation of planar 1D chains of
(Au) nanoparticles have been successfully fabricated by using the dodecanethiol-protected gold nanoparticles {BW). (b) AFM image of

pore channels of alumina membrafethe step edges of amorphous @ ridge-and-valley carbon layer on copper grid. (c) A line profile along the
carbon thin filmss® and biopolymerss However, the formation of ~ White line indicated in (b).
long-range 1D chains of metal nanoparticles in planar structure hasonto the NaCl templates at 25C. Since NaCI(110) is an unstable
not been achieved with these template methods. Here we show golane, the film surface becomes faceted with low-energy (100) and
novel method to fabricate a planar array of 1D chains of size- (010) planes during the homoepitaxial growth of NaCl. The facet
controlled Au nanoparticles prepared by our original chemical formation tilted by 48 with respect to the surface normal was
proces# in combination with a specially developed technique to confirmed in situ by RHEED. A 30-nm-thick carbon replica layer
produce nanoscale ridge-and-valley structured substrates using avas deposited directly on the NaCl surface, as shown in Figure
vacuum process.The faceted (110) planes of sodium chloride 1a. The carbon layer was floated off from the NaCl substrate in
crystals were used as templates to produce nanoscale ridge-andwater and was then loaded onto 400-mesh copper grids. As seen
valley structured carbon layers with a vacuum process. When thesein Figure 1b presenting an AFM image of the carbon replica layer,
carbon layers loaded on copper grids were dipped in toluene solutionit preserved ridge-and-valley surface topography with long and
of dodecanethiol-protected Au nanoparticles of 3.4 nm in Au core straight in-plane macrosteps along [001] of the NaCl epilayer. It
diameter followed by natural evaporation, a planar array of 1D was found from the line profile in Figure 1c that the valley depth
chains of Au nanoparticles was formed predominantly in valleys and its period are a few nm and ca. 20 nm, respectively.
and on ridges of carbon layers, where the assembly mechanism A method to control the size of dodecanethiol-protected Au
may be somewhat unique. nanoparticles (DFAu) was totally different from those in the liquid
The nanoscale carbon gratings were prepared in an ultrahighphasé and described elsewhet€The Au nanoparticles of 3.4
vacuum chamber equipped with NaCl and carbon evaporators and0.3 and 5.4+ 0.7 nm were obtained by the heat-treatment of 1.5
reflection high-energy electron diffraction (RHEED) apparatus. nm DT—Au nanoparticles in the solid state, which were prepared
Optical-grade (110) polished NaCl single crystals (muscut angle by the Brust's two-phase reaction procedtifEhe 1D chains of
<3°, purchased from CASIX, Inc.) were used as templates. These gold nanoparticles on the carbon layer-loaded copper grid were
crystals were etched in deionized water for a few seconds to removeprepared either by placing a drop of 5 mM toluene solution of DT
surface contamination prior to loading into the UHV chamber. The Au nanoparticles onto a carbon layer-loaded copper grid (a drop
20-nm-thick NaCl overlayers were deposited by thermal evaporation method) or by dipping a carbon layer-loaded copper grid perpen-
dicular into the toluene solutionf@ s with a valley direction kept
* To whom correspondence should be addressed. E-mail: tosiharu@jaist.ac.jp.tq g dipping direction (a dip method), followed by naturally
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Figure 2. (a) Low magnification TEM image of 5.4 nm DJAu

nanoparticles on a ridge-and-valley carbon layer prepared by a drop metho

(b) Magnified TEM image of 1D chains of DFAu nanoparticles.
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From AFM measurement of this sample, there is likely to be one
line of nanoparticles between two ridges, indicating that the Au
nanoparticles were predominantly immobilized in valleys and partly
on ridges. One explanation of the formation mechanism may be as
follows: When the substrate is withdrawn from the toluene, the
Au nanoparticles are adsorbed and assembled mainly in valleys at
the upper edge of the substrate by the adh&%iamd attractive
capillary forces®@respectively. Then the growth of 1D chains of
nanoparticles is caused through convective particle flux by solvent
evaporation from the already ordered chdf*d\Now an investiga-
glion on electronic property of 1D chains of B'Ru nanoparticles
is in progress.

Our studies demonstrate an approach for building planar arrays
of 1D chains of Au nanoparticles aiming future nanoelectronic
devices. Not only the interchain distances but also the symmetrically
complex patterns of many kinds of nanoparticles, such as metal,
semiconductor, and organic nanoparticles could be tuned by using
various faceted surfaces of inorganic crystals. For the production
of future ULSI, the combination of this method with a special
patterning technique of nanoparticles by the protective ligands may
be necessary and is under consideration.
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Figure 3. TEM images of 3.4 nm DFAu nanopatrticles on ridge-and-
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